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Abstract In possible connection with dislocation pinning by foreign atoms in alloys and
vortex pinning in type II superconductors, we compute the external force required to drag
an elastic string along a discrete two-dimensional random array with finite dimensions. The
obstacles, with a maximum pinning force fm are distributed randomly on a rectangular lat-
tice with square symmetry. The system dimensions are fixed by the total course of the elastic
string Lx and the string length Ly . Our study shows that Larkin’s length is larger than Ly

when fm is less than a certain bound depending on the system size as well as on the obstacle
density cs . Below such a bound an analytical theory is developed to compute the depinning
threshold. Some numerical simulations allow us to demonstrate the accuracy of the theory
for an obstacle density ranging from 1 to 50% and for different geometries.

Keywords Depinning transition · Dislocation · Solid solution hardening · Vortex

1 Introduction

Within analytical theories for dislocation depinning [13–15, 17, 25, 30–32, 43], the dislo-
cation was thought of as a continuous elastic string impinged on a two-dimensional (2D)
random static potential. The depinning transition in such a model is a typical issue of sta-
tistical physics, belonging to a broad class of problems concerned with extended interfaces
motion in heterogeneous media [4–8, 10, 12, 21, 22, 26, 29, 33, 41, 44, 47, 49, 50]. From the
dimensional analysis of vortices pinning in superconductors, Larkin et al. derived a typical
length [3, 27] given by Lc ∼ a(Γ/f̄

√
cs)

2/3, where a is the shortest interatomic distance, f̄

is a typical pinning force that characterizes the string-obstacle interaction, cs is the atomic
density of obstacles and Γ corresponds to the elastic line tension. Larkin’s length fixes the
size of the domains where the pinning on disorder is stronger than elastic forces. The dif-
ference between both competing effects fixes a finite depinning threshold above which the
elastic interface starts gliding. From the previous formula, it is seen that Lc increases as the
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ratio Γ/f̄ increases and that by extrapolation, Larkin’s length may even pass the total string
length, i.e., in the cases of stiff strings anchored by very weak pinning points. Such a situa-
tion may present some interest in regard of different physical problems. In solid solutions the
dislocations are anchored by atom-sized obstacles that impede the plastic flow thereby yield-
ing solid solution hardening [11]. Then the maximum pinning force of the foreign atoms is
of few hundredth nano-Newton [9, 28, 35, 37, 39, 40, 45, 46] while the dislocation line ten-
sion ranges around several nano-Newton in deformed metals with typical dislocation density
ρd = 1012 m−2. According to the linear elastic theory of dislocations [20] such a line tension
varies as ln(1/ρd), leading to stiffer dislocations in materials with less extended defects. In
monocrystalline alloys with short dislocations as in thin folds, one can therefore expect Lc

being larger than the dislocation length. The second physical problem where diverging Lc

could occur is type II superconductors where the vortices pinning forces [2, 36] and line
tension [18, 42] may have same orders as for dislocations in solid solutions. The similarities
in depinning transition of vortices and dislocations triggered Labusch’s work in both fields
[23, 24]. However, the peculiarity of vortices in superconductors hinges on a pinning force
which would vanish at the temperature of the superconducting phase transition Tc , as shown
experimentally in Niobium [36]. Then the closer from Tc the smaller the ratio Γ/f̄ which
leads, as for dislocations in materials with small ρd , to a Larkin’s length that diverges. In
the limit of a stiff string and weak pinning, another expectation from Larkin’s model con-
cerns the wandering W which would vary as the inverse of the ratio Γ/f̄ . A physical lower
bound for W is the unit cell of the lattice bearing obstacles, typically the shortest interatomic
distance in solids.

In the present paper, the depinning of an elastic string is studied in situations where Lc

is larger than the total string length and W is of the order of the shortest distance between
lattice sites. To approach such a problem, the continuous version of the elastic string model
is replaced with a discrete spring chain the nodes of which move on a 2D square lattice and
interact with pinning points randomly distributed on lattice sites. This very simple model
allows us to devise an analytical theory which accounts for the discreteness of the obstacle
distribution and the finite dimensions of the system. In order to demonstrate the accuracy
of the theory, the latter is compared with simulations. Theory and numerical computations
agree remarkably well for a broad range of model parameters, e.g., (i) the in-plane obstacle
density cs , (ii) the lattice size in every direction of space, (iii) the maximum pinning force
fm and (iv) the potential interaction cutoff w. The theoretical predictions proves reliable on
the condition that fm and w remain smaller than certain bounds varying with cs and lattice
dimensions.

The paper is organized as follows. In Sect. 2, the spring chain model is introduced and
the numerical computations are described. In Sect. 3, the statistical theory is derived and
compared with numerical data. The results are resumed and commented in Sect. 4.

2 The Discrete String Model

An elastic string is discretized with a spatial step b, equivalent to the shortest interatomic
distance in solids. Each node of the discrete chain is bound to its first neighbor by an har-
monic spring of strength Γ . The two quantities, b and Γ are chosen to scale distances and
forces, respectively. The size of the lattice in the direction of the chain is denoted as Ly

whereas the distance over which the chain is dragged is Lx . The spring chain nodes move
along the X-axis while Y-axis points in the main line direction. The 2D random array of
obstacles is constructed by selecting randomly the occupied lattice sites, up to a number
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of obstacle equals to csLxLy , where cs is the obstacle density. Since the depinning process
occurs when chain nodes pass the obstacle force maximum, the interaction potential is ex-
pended as a polynomial function in the vicinity of such a maximum. Assuming that the
interaction is attractive and that the potential is symmetric with respect to its minimum, we
obtain a polynomial function of fourth order:

V (x) = V0(x
2/w2 − 1)2 for |x| < w,

V (x) = 0 for |x| > w,
(1)

which corresponds to a force maximum fm = 8|V0|/(3
√

3w), attained when x = ±w/
√

3.
The chain nodes interact solely with obstacles situated in the column along which they
may glide. The parameter w fixes how the interaction decreases in the vicinity of the force
maximum fm. Both fm and w can be extracted from atomistic data as those reported in
[37, 39].

The dimensionless over-damped Langevin dynamics for the chain node k is given by:

ẋk = [xk+1 + xk−1 − 2xk] + τ −
∑

i

4V0
(xk − sk,i )

w2

(
(xk − sk,i )

2

w2
− 1

)
, (2)

where xk is the position of the node k, τ is the external force and sk,i is the coordinate of the
ith obstacle in the kth row. For the weak pinning forces we are concerned with, the chain
strain remains very small such that the anharmonic terms in the spring tension have been
neglected. Properly scaled, the continuous version of the spring chain model served in the
development of the solid solution hardening theory [15, 17, 24, 30, 32]. It also belongs to
the wide class of elastic interface models, extensively studied in statistical physics [4, 8, 12,
26, 33, 41, 44, 47].

In the course of the numerical integration for Eq. 2, τ is incremented adiabatically. Once
[supk |ẋk|] is inferior to a certain precision (i.e., 10−7) the external force is incremented.
Before each increment, the chain configuration is recorded and once the chain has run over
a distance Lx , the integration is stopped. The latest anchored configuration corresponds to
the strongest one and the associated external force is denoted as τc , i.e., the static depinning
threshold. We performed this type of simulations for different lattice aspect ratios, varying
Lx and Ly and for different obstacle densities ranging from 1 to 50%.

In Fig. 1(a), we report the strongest chain configuration, obtained from the numerical
simulations for a pinning strength fm = 0.1. The critical profile is found to wander and to
cross at least 40 lattice rows. In Fig. 1(b), the critical chain profile is shown for smaller values
of fm, i.e., two orders of magnitude smaller than the one used in Fig. 1(a). We note that the
entire string length is bounded by only two lattice rows. The simulations evidence actually
a well known feature for pinning of extended defects [26], namely weaker the obstacles
flatter the shape of the critical configuration. A perfectly rigid string would even experience
a null force since then V0 would be negligible in Eq. 2. However, as soon as some elasticity
enters into play, τc is finite. The case of wavy critical profile as seen from Fig. 1(a) has been
studied extensively in the past, both through numerical simulations [1, 16, 19, 34, 48] and
analytical works [14, 24]. The predictions drawn from the theories on depinning of wavy
profiles can be expected to be inadequate for systems with quasi-straight critical profile,
since the string wandering is then inferior or of the order of the inter-atomic spacing. Then a
discrete approach is required. The present work is essentially concerned with cases like the
one presented in Fig. 1(b), where the elastic string shape is quasi-straight.
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Fig. 1 (a) Strongest pinning configuration of the spring chain on a random array of obstacles (circles) for fm = 0.1,
Ly = 2000, Lx = 500, a density cs = 16% and an interaction cutoff w = 1. Only obstacles close from the chain have been
reported for clarity. Inset shows a magnification of obstacles (circles) and nodes (triangles) of the chain segment. X and
Y axis have different scaling for convenience of the plot. (b) Same as in (a) but for w = 0.5, fm = 0.005 and the obstacle
density cs = 7%

3 Vacant Site Cluster Sampling Theory

In the insets shown in Fig. 1(b), it is worth noticing that along the rows that bound the
spring chain, some holes appear in the obstacle distributions. Hereafter, we dubbed such
holes vacant site clusters. The statistics of such density fluctuations along lattice rows plays
a key role in the determination of the maximum drag force. In Fig. 1(b), the more strongly
pinned configuration remains tightly bound to a single lattice row situated at the back of the
chain. The string can then be viewed as quasi-straight, notwithstanding the bulges formed
between rows. When w ≤ 0.5, we can assume that the chain interacts with rows one by
one and it is natural to work on the hypothesis that for such a system the strength of the
random lattice is fixed by its denser row. To convey such a remark into some algebra, one
needs to study the sampling of obstacles on a finite size lattice Lx × Ly . We notice that
the purely random planar distribution follows Bernoulli’s binomial law and that the number
of obstacles No involved into a single row of length Ly is then a random variable which
probability is given by:

ρ(No) = C
Ly

No
cNo
s (1 − cs)

Ly−No , (3)

where C
Ly

No
= Ly !/No!(Ly − No)!. Such a statistical distribution can be approximated with

Poisson’s law in the limit of large Ly . However such a rounding yields some error for small
Ly , so we keep the binomial formulation of Eq. 3. The probability for a row to involve less
than N obstacles is

∑
No<N ρ(No) and therefore in a set of Lx rows, the probability for a

row to contain Nm obstacles and (Lx − 1) rows with a number of obstacles inferior to Nm

is:

β(Nm) = Lx[ρ(Nm)]
[

∑

No<Nm

ρ(No)

]Lx−1

. (4)

The maximum number Nm fixing the number of obstacles in the denser row depends only on
the lattice dimensions in each direction of space and on the overall obstacle density cs . The
mean density in the denser row is then cm = Nm/Ly . When an excess of vacant sites emerges



Depinning of a Discrete Elastic String from a Random Array of Weak 721

Fig. 2 Schematic representation
of the model used for a
quasi-straight spring chain tightly
bound to a single lattice row. The
small full circles represent the
lattice sites, the large open
circles represent the obstacles
and the triangles are for the
spring chain nodes. The average
number nv of vacant sites
involved in the largest vacant site
cluster is determined through
Eqs. 6 and 5. The average
spacing m between the obstacles
on both sides of the largest vacant
site cluster is fixed by Eq. 7

at some place along the denser row, such segment is weaker than others where the obstacles
are more crowded. Thence the spring chain starts depinning on the largest vacant site clusters
(VSC). The typical size of such VSC must now be determined. Actually the mean number
of VSC in a row which the obstacle density is fixed to cm is LVSC = (cmLy − 1) ≈ Nm. The
normalized probability to find a VSC with exactly n vacant sites is cm(1 − cm)n while the
probability for a VSC which size is inferior to n is [1 − (1 − cm)n]. The probability to find
a VSC of size n and (LVSC − 1) VSC with size inferior to n is proportional to:

γ (n) = LVSC[cm(1 − cm)n][1 − (1 − cm)n]LVSC−1. (5)

The mean size of the largest VSC in the denser row is thus:

nv =
∑

n

[nγ (n)]/
∑

n

γ (n). (6)

Such a maximum VSC is surrounded by other VSCs that mean size is given by:
[∑n<nv

ncm(1 − cm)n]/[∑n<nv
cm(1 − cm)n] which for convenience is denoted as (m − 1)

with:

m = 1

cm

− nv

(1 − cm)nv

1 − (1 − cm)nv
. (7)

To compute the external force associated with the strongest binding row we consider the
segment of nv vacant sites as embedded into a regular lattice of obstacles spaced by a mean
distance m. Such a mean-field construction is illustrated within Fig. 2, where spring chain’s
nodes (triangles) are bound to the lattice sites occupied by the obstacles (large open circles).
The array of obstacles is assumed to be centro-symmetric, so we ascribe the label 0 to the
center of symmetry which corresponds to the top of the bulge. We also define a new variable
n = (1 + nv)/2 for convenience of notations. Under the external applied force τ , The force
balance sheet, for say the left hand side of the chain leads to the set of equations:



722 L. Proville

F0 = −τ − 2(x1 − x0),

F1 = −τ − (x2 + x0 − 2x1),

F2 = −τ − (x3 + x1 − 2x2),

. = .

Fn−1 = −τ − (xn + xn−2 − 2xn−1),

Fn = −τ − f (xn) − (xn+1 + xn−1 − 2xn), (8)

Fn+1 = −τ − (xn+2 + xn − 2xn+1),

. = .

Fn+m−1 = −τ − (xn+m + xn+m−2 − 2xn+m−1),

Fn+m = −τ − f (xn+m) − (xn+m+1 + xn+m−1 − 2xn+m),

Fn+m+1 = −τ − (xn+m+2 + xn+m − 2xn+m+1),

and in principle the series of equations repeats up to the chain boundaries with increment of
subscripts. We assume that the mechanical equilibrium is satisfied for all nodes j situated
in between obstacles. Then Fj = 0 but for j ∈ [n,n + m, . . . , n + pm]. For the segment
j ∈ [0, n], it is easy to show by recurrence that: xj − x0 = −τj 2/2. For j ∈ [n,n + m],
we proceed the same and find xj+n − xn = −τj (n + j/2) − [Fn + f (xn)]j which fixes the
segment end to

xn+m = xn − τm(n + m/2) − m[Fn + f (xn)]. (9)

The same can be iterated once again for j ∈ [n+m,n+2m] which leads to xn+2m −xn+m =
−τm(n + 3m/2) − (Fn + Fn+m + f (xn) + f (xn+m))m. The set of equation on the positions
xn+jm is then:

xn+m = xn − τm(n + m/2) − f (xn)m,

xn+2m = xn+m − τm(n + 3m/2) − [Fn + Fn+m + f (xn) + f (xn+m)]m,

. = .

. = .

xn+pm = xn+(p−1)m − τm

(
n + (2p − 1)

m

2

)
− m

p−1∑

j=0

[Fn+jm + f (xn+jm)].

(10)

Subtracting the two latest equations yields:

Fn+pm = −�mxn+pm

m
− τm − f (xn+pm) (11)

where �pxn+pm = (xn+(p+1)m +xn+(p−1)m −2xn+pm) is the discrete Laplacian applied to the
p subscript. When the entire chain is at mechanical equilibrium Fn+pm = 0 for all p. Far
enough from the nv-VSC (i.e., the VSC with nv vacant sites), the solution for xn+pm tends
asymptotically to a constant x∞ such as τm = −f (x∞) and therefore:

x∞ = 2√
3

cos

(
arccos(−τm/fm)

3
+ 4π

3

)
. (12)
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We can expend linearly Eq. 11 for the far enough sites such as the displacement xn+pm writes
xn+pm = x∞ +εp and f (xn+pm) = f (x∞)+f ′(x∞)εp . Then, at the equilibrium Eq. 11 yields
[�pεp = −f ′(x∞)mεp] and thence εp is an exponential function: [εp = ε0 exp(−αp)] which
the exponent α verifies

α = ±2 ash(
√−f ′(x∞)m/2). (13)

Since the chain displacement is bounded, we are solely concerned with solutions such as
(αp) > 0. The sum of the whole set of equations in Eq. 10 provides another relation between
τ and nodes positions xn+pm, on the condition that Fn+pm = 0 for all p:

xn − xn+pm = m

[
τp(n + pm/2) +

p−1∑

j=0

(p − j)f (xn+jm)

]
, (14)

which after expanding f (xn+jm) as a Taylor series around x∞ and keeping only the terms
linear in p provides us with an equation which relates τ to ε0:

τ = −ε0

(n − m/2)

[
f ′(x∞)

(1 − e−α)
+ ε0f

′′(x∞)

2(1 − e−2α)
+ ε2

0f
′′′(x∞)

6(1 − e−3α)

]
. (15)

The critical chain configuration is reached when the Hessian associated with Eq. 11 has a
singular eigenvalue. This allows us to determine the critical value for ε0. Actually we found
that finding the Hessian singular eigenvalue is equivalent to find the maximum of Eq. 15 for
τ with respect to ε0. The solution for the critical bulge is then:

ε0 = −3(1 − e−3α)
f ′′(x∞) −

√
f ′′(x∞)2 − 4f ′′′(x∞)f ′(x∞) (1−e−2α)2

3(1−e−3α)(1−e−α)

2f ′′′(x∞)(1 − e−2α)
. (16)

Combining the solutions for Eqs. 12, 13, 15 and 16 allows us to determine the maximum
pinning force associated with Nm, the number of obstacle in the denser row. For this reason,
we denote such a maximum as τ(Nm). The set of equations giving τ(Nm) can be solved
recursively. Starting with a small enough trial solution for τ = τ0, we compute the corre-
sponding quantities x∞ and α from Eq. 12 and from Eq. 13. Then ε0 is derived from Eq. 16
and the corresponding value of τ from Eq. 15. If the so obtained quantity is larger than the
initial value τ0 then the latter is incremented and we proceed the same up to find identical
values for τ and τ0. The end result gives the required τ(Nm) to a precision fixed by the trial
solution increment.

The maximum drag force τc of the random lattice is approximated by averaging τ(Nm)

over Nm:

τc =
∑

Nm

β(Nm)τc(Nm), (17)

where β(Nm) has been given in Eq. 4. The previous theory is compared to simulations
data in Figs. 3(a) and (b) and in Fig. 4 for different lattice dimensions, different pinning
forces, varying w and fm. A quantitative agreement has been obtained between theory and
simulations, although no adjustable parameters are involved. The theory predictions worsen
for cases where the critical configuration crosses few lattice rows. From Fig. 4, it can be
seen that the discrepancy increases as the density decreases while the theoretical predictions
remain accurate for more concentrated obstacle distributions. As fm increases above 0.03,
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Fig. 3 External force required to drag a spring chain of length Ly over a distance Lx , for a pinning strength
fm = 0.005 and a cutoff w = 0.1 in (a) and w = 0.5 in (b). The symbols represent the data obtained through
the simulations described in Sect. 2, for different lattices (see figures legend). The continuous lines correspond
to the predictions made through the theory detailed in Sect. 3 for same parameters as those used in simulations.
Colors of symbols and lines correspond one to one

the deviation between theoretical predictions and simulations data is shifted toward higher
densities.

Other authors [16, 34] noticed that the depinning from a random lattice was dependant
on the drag distance. Concerning the weak pinning points studied here, it is thus of some
interest to explore the variation of the maximum drag force with lattice dimensions. The
maximum drag force was found to vary as:

τc ≈ A(cs,Ly)[ln(Lx)]αx (18)

where αx varies with all other parameters but Lx and where A(cs,Ly) is a function
of cs and Ly . For instance when w = 0.5, fm = 0.01 and Ly = 1000, we found αx =
[0.018 − 0.062 ln(cs)] and A = [0.083c1.13

s ]. One can thus observe that the Lx dependence
is very weak since a logarithm is a rather wise function. However, strictly speaking τc is
not bounded and increases with Lx . Actually the longer is the string course the larger is the
pinning force that may be encounter along such a course.

The maximum drag force τc depends not only on Lx but also on Ly . It was found to vary
as:

τc ≈ B1(cs,Lx) + B2(cs,Lx)

[ln(Ly)]αy
, (19)

where B1 increases as a power law in cs whereas B2 and the logarithm exponent αy decreases
smoothly with cs increase. For instance with w = 0.5, fm = 0.001 and Lx = 200, we found
αy = [1.27 − 0.27 ln(cs)], B1 = 9.8910−4c1.41

s and B2 ≈ 0.003. Extrapolating Eq. 19 to very
large Ly shows that τc tends toward B1, independent from Ly . The theoretical predictions
for the τc dependence against Ly have been compared with numerical simulations in Fig. 5.
The depinning threshold has been computed for different Ly and different fm and for fixed
parameters cs = 0.1, w = 0.5 and Lx = 200. The numerical computations were averaged
over a sampling of 15 random distributions of obstacles in order to reduce uncertainties
yielded by the τc dispersion. As mentioned previously, the VSC theory proves accurate
provided that fm remains small enough. The upper bound on fm for that the theory remains
valid depends on other parameters, i.e., Ly , Lx , w and cs . Figure 5 evidences the dependency
on Ly for the case fm = 1.10−2, w = 0.5 and cs = 0.1. Then it was found that the theory
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Fig. 4 External force required to
drag a spring chain of length
Ly = 1000 along a distance
Lx = 100, for different obstacle
pinning strengths (see legend)
and the same interaction range
w = 0.5. The different symbols
represent the simulations data
and the continuous lines
correspond to the prediction
made through the analytical
theory detailed in the text for
same parameters

Fig. 5 Comparison between
numerical computations
(symbols) and the theory (full
lines) for the ratio between
depinning force τc and obstacle
pinning strength fm against the
string length Ly . The drag
distance is Lx = 200 and
fm = 0.01 (squares) or
fm = 0.001 (circles) with an
interaction cutoff w = 0.5

is accurate for Ly smaller than LVSC
y = 1000 while a neat departure between theory and

numerics can be noticed above. We also noted that the smaller fm the larger the bound LVSC
y .

As an example, in Fig. 5 for fm = 10−3, the theory agrees satisfactorily with simulations
over the whole range of Ly which means that LVSC

y is then much larger than the system
dimension along the Y direction. Another point worthy to notice is that LVSC

y increases with
cs and more importantly with the drag distance Lx such that for a sufficiently long course
it is possible to recover the accuracy of the theory. For a finite Ly , an infinite course would
actually yield a quasi-straight pinning configuration with one obstacle per site in the lattice
denser row. Such a configuration corresponds to the maximal strength that could provide the
disordered lattice.

From Fig. 5 it is seen that τc tends toward an asymptotic value as Ly takes larger values.
The convergence toward a steady τc against Ly corresponds to the expectation drawn from
Larkin’s model [27] which predicts τc independent from Ly when the latter is much larger
than Lc (see Sect. 1). Applying naively Larkin’s model to small Ly would though lead to
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erroneous predictions. For small length scales, in the energy balance sheet established by
Larkin and Ovchinnikov [27], the contribution from elastic line tension is larger than the
one from disorder. Then τc would fall to nought when Ly is less than Lc . Usually it is said
that elasticity dominate disorder on small length scales. Our computations demonstrate a
neat departure from such expectation as seen from Fig. 5. When Ly is small enough, the
string configuration at depinning is quasi-straight and then τc does not vanish but rather
increases with Ly decrease. It is mainly because of the string pinning on a single lattice row
that corresponds to the denser row of the disordered lattice. The present remark could be
resumed into a short sentence: Disorder dominates elasticity over all length scales.

For fixed lattice dimensions, the adjustment of a density power law for the theoretical
maximum drag force τc is found very close from a linear variation and may even be larger
than unity in some situations depending on the lattice geometry. For instance, from Fig. 3(b),
we worked out through a curve fitting with the form τc ∝ (cη

s ), an exponent η = 1.13 for
Ly = 4000 and Lx = 25 whereas for Ly = 500 and Lx = 1000, η = 0.946 was obtained.
The effective density exponent η is therefore dependent on the dimensions of the lattice.
However, such variations with respect to Lx and Ly remain weak and would be hardly
identified in a narrow range of obstacle density.

4 Summary and Perspectives

A theory was derived to compute the applied force required to drag an elastic string over a
disordered planar distribution of weak pinning points with finite dimensions. In comparison
to numerical simulations, the theoretical predictions were found accurate provided that the
critical configuration remains close from a quasi-straight line. The strongest pinning was
shown to correspond to a pinning on the denser lattice rows in which the size of the vacant
site clusters (VSC) is bounded in average. The maximum VSCs correspond to the weakest
defects in the denser row from which the critical depinning proceeds. The mean size of the
critical VSC is determined through an expression involving only lattice dimensions and the
overall planar obstacle density cs . The theory allowed us to account for the finite lattice
dimensions in a quantitative manner, with no adjustable parameters. The variations of the
critical applied force τc against the chain length Ly and the drag distance Lx are opposite:
the larger Ly the smaller τc and the larger Lx the larger τc . The τc variation with Ly is
bounded with an asymptotic value that depends on Lx and cs . For a fixed lattice geometry,
the pinning strength was found close to being linear in cs . An extension of the VSC theory to
cases with larger potential cutoff w is under progress [38]. Preliminary works demonstrate
that the principal results of the present study remain.

The effects of lattice dimensions on depinning of an elastic string could be of some in-
terest to interpret experimental works on the single vortex depinning in thin film [2] where
the vortex extent is limited to several tens of nanometers, i.e., the thickness of the film. The
extinction of the vortex pinning forces at the superconducting transition [36] underpins the
assumption for a very weak pinning and thence for the quasi-straight critical configuration.
Moreover the vortex line tension being expected to increase as the correlation length de-
creases [18] the vortices should be stiffer in high-Tc superconductors where the assumption
of a quasi-straight critical configuration would be more amendable. Experimental works as
those reported in Ref. [2] allow to measure the depinning threshold of a single vortex within
a thin film of mono-crystalline cuprate, with different film thicknesses and different temper-
atures. According to our analysis of the data reported on the vortex pinning forces [2] the
latter would decrease as predicted in Eq. 19 with αy that would depend on the concentration
of the oxygen vacancies. We acknowledge though that more data would be needed to draw
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safer conclusion on a possible agreement between theory and experiments. For instance, the
same type of experiments as those reported in Ref. [2] could be performed with irradiated
samples to modify the number of pinning points.
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